工业大数据要如何管理

  发布时间: 2020年04月23日 04:47:41   作者: 广丰能源网

  工业是国民经济的基础和支柱,也是一国经济实力和竞争力的重要标志。近年来,工业大数据作为我国“智能制造”和“工业互联网”的关键技术支撑以及两化融合的重要基础备受关注。党中央、国务院出台了一系列“大数据”“两化融合”“互联网与制造业融合”等综合性政策与指示,其中对工业大数据发展提出了明确的要求,全面指导我国工业大数据技术发展、产业应用及其标准化进程。

  一.工业大数据是什么

  工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后、服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称,工业大数据以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。

  二.工业大数据产业现状

  从供给侧看,工业大数据供给侧能力持续提升,涌现出一批专精特新企业,成为推动我国工业大数据发展的中坚力量。一是由传统工业制造企业数字化、软件化、平台化发展,出现了一批具有较强数据汇聚能力的衍生型企业,如航空工业的航天云网、制造业的树根互联、能源行业的开物云平台等;二是软件企业向工业领域渗透,出现的技术型企业,如昆仑智汇、东方国信等企业在工业数据建模、分析处理等领域不断突破核心技术;三是互联网企业积极进入工业领域,如阿里推出“ET工业大脑”等产品和服务,腾讯推出工业互联网“木屋云”平台。

  从需求侧看,随着智能制造、工业互联网等国家战略的逐一推进,个性化定制、网络化延伸以及智能化设计、生产、服务等新模式不断出现,对于工业大数据技术、产品、平台的需求不断增大,为工业大数据提供了充足的应用场景。

  然而,在我国工业大数据产业发展不断优化提升的同时,仍需要清楚认识到我国工业大数据的仍存在物联数据无法获取、格式不同意,数据产权不清晰、数据壁垒难以打破,全产业链数据应用不足等问题。主要原因在于,第一,在我国国产工业软件、高端物联设备核心技术供给不足,而国外设备读写不开放,数据无法读取或者格式多样,无法直接利用;第二,面对体量大、分布广、结构复杂、类型多样化的工业数据,目前工业行业整体数据资源管理水平不足,难以管理企业内部和外部各类数据,更无法充分分析和利用。第三,缺乏可用、好用、可信的工业大数据平台,难以充分利用工业全产业链上下游的数据,以实现人、机、物等各类工业要素、工业业务流程以及产业链上下游企业间更大范围的实施链接与智能交互,推动工业生产的资源优化、协同制造和服务延伸。

  三.工业大数据如何管理

  01数据质量管理

  工业大数据的质量存在很多问题。一是数据失真和失准。受制于工业现场的一系列恶劣工况,在工业OT域,现场物联网络、生产制造装备、过程控制设备均不同程度地存在数据失真。二是数据一致性差。对于来源于IT域的工业大数据,由于工业企业现有的信息化系统均不同程度的存在“系统林立”的问题,难以在数据生产过程中采用有效的控制手段来保障各个工业IT系统所产生的数据的一致性。三是对历史数据缺乏“再生”机制。工业历史数据的“再生”将有助于提升工业全生命周期管理能力。四是缺乏标准化的数据质量管理框架。在不同的业务场景中,各种结构化和非结构化数据集被多个使用者共享和使用。五是数据质量补偿手段尚未得到广泛应用。

  工业大数据的质量管理需要工业企业建立完善的工业大数据质量管理组织架构,明确数据权属、管理者、使用者;面对不同的工业大数据质量问题,制定质量为的定义、等级、处理及复盘机制,制定规范的数据质量改善流程,形成面向多样化的工业大数据应用场景的数据质量管理闭环。

  02数据安全管理

  大数据技术应用于工业领域给企业带来巨大的效益,然而工业大数据对工业企业来说既是机遇也是挑战,在给企业带来巨大经济利益的同事,其本身所存在的安全问题也让企业面临着巨大的风险。一方面,由于工业控制系统的协议多采用明文形式、工业环境多采用通用操作系统且不及时更新、从业人员的网络安全意识不高,再加上工业数据的来源多样,其有不同的格式和标准,使其存在诸多可以被利用的漏洞。另一方面,在工业应用环境中,对数据安全有着更高的要求,任何信息安全事件的发生都有可能威胁工业生产运行安全、人员生命安全甚至国家安全等。因而,研究工业大数据安全管理,加强对工业企业的安全保护变得尤为重要。

相关文章

  • © 2019 广丰能源网 版权所有 | 88888888 | 网站地图|